Introduction
当研究室は2016年4月に東京大学生産技術研究所にて発足しました。その研究成果は、学術論文や書籍、特許などの形で公開しています。
Composition Dependent Synergistic Effects on Oxygen Evolution Reaction Catalysis for CaFe1–xMnxO3
A. Ochi, S. Asakura, M. Goto, S. Yagi, I. Yamada, and H. Ikeno
J. Ceram. Soc. Jpn., in press.
Effect of Vanadium Doping on α-KxMnO2 as a Positive Electrode Active Material for Rechargeable Magnesium Batteries
I. Oda-Bayliss, S. Yagi, M. Kamiko, K. Shimadaa, H. Kobayashib, and T. Ichitsubo
J. Mater. Chem. A, 12, 17510–17519 (2024). doi: 10.1039/D4TA00659C
High-pressure Route to Irreversible Thermochromic Materials
M. Oshita, H. Murata, H. Yamamoto, S. Kobayashi, S. Kawaguchi, I. Oda-Bayliss, W. WANG, S. Yagi, and K. Kimura
J. Phys. Chem. C, in press. doi: 10.1021/acs.jpcc.4c01297
Near Zero Thermal Expansion and Electrocatalysis for Quadruple Perovskite Oxides CaCu3Fe4−xMnxO12
M. Goto, I. Yamada, S. Yagi, and K. Kimura
J. Ceram. Soc. Jpn., 132(6), 267–274 (2024). doi: 10.2109/jcersj2.24004
Synthesis Conditions Affecting Electrochemical and Chemical Stabilities of Ga-doped Li7La3Zr2O12 Solid Electrolyte
D.Y. Huang, M. Kamiko, and S. Yagi
EcoEnergy, 2, 141–153 (2024). doi: 10.1002/ece2.24
Thermochromism and thermal crystal structure evolution of YIn0.9Mn0.1O3
M. Oshita, H. Murata, I. Oda-Bayliss, W. Wang, S. Yagi, and K. Kimura
Jpn. J. Appl. Phys., 63, 012007 (2024). doi: 10.35848/1347-4065/ad17e0
Nanoscopic Force Sensitivity of Polydiacetylene 2D Layered Composites with Guest Molecules
B. Das, N. Shioda, S. Yagi, Y. Oaki, and K. Sugihara
Adv. Mater. Interfaces, 2300745 (2023). doi: 10.1002/admi.202300745
Glyme Solvent Decomposition on Spinel Cathode Surface in Magnesium Battery
W. Zhou, C. Xu, B. Gao, M. Nakayama, S. Yagi, and Y. Tateyama
ACS Energy Lett., 8, 4113–4118 (2023). doi: 10.1021/acsenergylett.3c01084
Co-substituted Nonstoichiometric LaMn1–xCoxO3+δ Perovskite Oxide Cathode Catalysts for the Oxygen Reduction Reaction for High-Performance Zn–Air Batteries
W.Wang, M. Kamiko, and S. Yagi
J. Phys. Chem. C, 127, 13529–13537 (2023). doi: 10.1021/acs.jpcc.3c02488
Synergistic Effect between Fe4+ and Co4+ on Oxygen Evolution Reaction Catalysis for CaFe1–xCoxO3
I. Yamada, A. Tanaka, S. Oda, Y. Okazaki, F. Toda, Y. Kato, Y. Kizawa, M. Oshita, M. Goto, A. Morimura, A. Ochi, K. Toda, W. Wang, H. Yamamoto, H. Ikeno, and S. Yagi
Mater. Trans., Special Issue: Nanostructured Functional Materials and Their
Applications IV, 64(8), 2097–2104 (2023). doi: 10.2320/matertrans.MT-MG2022021
Effect of Cation Vacancies in Nonstoichiometric (LaMn)1–xO3 on Oxygen Reduction Reaction Catalysis
W. Wang, W. Liu, M. Kamiko, and S. Yagi
J. Alloy. Compd., 946, 169398 (2023). doi: 10.1016/j.jallcom.2023.169398
High-Throughput Screening of (La,Sr)(Fe,Co)O3 Perovskite for Oxygen Evolution Reaction Catalysis
Y. Okazaki, Y. Tokudome, S. Yagi, and I. Yamada
Mater. Trans., Special Issue: Nanostructured Functional Materials and Their
Applications IV, 64(8), 2082–2087 (2023). doi: 10.2320/matertrans.MT-MG2022006
Composition-Designed Multielement Perovskite Oxides for Oxygen Evolution Catalysis
Y. Okazaki, Y. Fujita, H. Murata, N. Masuyama, Y. Nojima, H. Ikeno, S. Yagi, and I. Yamada
Chem. Mater., 34(24), 10973–10981 (2022). doi: 10.1021/acs.chemmater.2c02986
Control of Electrolyte Decomposition by Mixing Transition Metal Ions in Spinel Oxides as Positive Electrode Active Materials for Mg Rechargeable Batteries
J. Han, S. Yagi, H. Takeuchi, M. Nakayama, and T. Ichitsubo
J. Phys. Chem. C, 126(45), 19074–19083 (2022). doi: 10.1021/acs.jpcc.2c06443
Effects of Cation Vacancies at Tetrahedral Sites in Cobalt Spinel Oxides on Oxygen Evolution Catalysis
W. Liu, M. Kamiko, I. Yamada, and S. Yagi
Mater. Adv., 3(20), 7373–7676 (2022). doi: 10.1039/D2MA00729K (open access)
Highly Active and Stable Surface Structure for Oxygen Evolution Reaction Originating from Balanced Dissolution and Strong Connectivity in BaIrO3 Solid Solutions
S. Hirai, S. Yagi, H.-C. Oh, Y. Sato, W. Liu, E.-P. Liu, W.-T. Chen, A. Miura, M. Nagao, T. Ohno, and T. Matsuda
RSC Adv., 12, 24427–24438 (2022). doi: 10.1039/D2RA04624E (open access)
Effects of A-site Cations in Quadruple Perovskite Ruthenates on Oxygen Evolution Catalysis in Acidic Aqueous Solutions
W. Liu, K. Kawano, M. Kamiko, Y. Kato, Y. Okazaki, I. Yamada, and S. Yagi
Small, 18, 2202439 (2022). doi: 10.1002/smll.202202439
Preparation of Conductive Cu1.5Mn1.5O4 and Mn3O4 Spinel Mixture Powders as Positive Active Materials in Rechargeable Mg Batteries Operative at Room Temperature
H. Takemitsu, Y. Hayashi, T. Mandai, S. Yagi, Y. Oaki, and H. Imai
J. Sol-gel Sci. Technol., 104, 635–646, (2022). doi: 10.1007/s10971-022-05891-0
Enhanced Catalytic Activity of Perovskite La1−xSrxMnO3+δfor Oxygen Reduction Reaction
W. Wang, W. Liu, M. Kamiko, and S. Yagi
New J. Chem., 46, 13082–13088 (2022). doi: 10.1039/d2nj02619h (open access)
Multiple Factors on Catalytic Activity for Oxygen Evolution Reaction in Magnetoplumbite Fe-Co Oxide BaFe12–xCoxO19
I. Yamada, F. Toda, S. Kawaguchi, and S. Yagi
ACS Appl. Energy Mater., 5(5), 5995–6002 (2022). doi: 10.1021/acsaem.2c00394
Electrochemical Deposition of Amorphous Cobalt Oxides for Oxygen Evolution Catalysis
W. Liu, M. Kamiko, I. Yamada, and S. Yagi
RSC Adv., 12, 8731–8736 (2022). doi: 10.1039/D2RA00492E (open access)
Highly Active Postspinel-structured Catalysts for Oxygen Evolution Reaction
Y. Okazaki, S. Oda, A. Takamatsu, S. Kawaguchi, H. Tsukasaki, S. Mori, S. Yagi, H. Ikeno, and I. Yamada
RSC Adv., 12, 5094–5104 (2022). doi: 10.1039/d2ra00448h (open access)
Catalytic Mechanism of Spinel Oxides for Oxidative Electrolyte Decomposition in Mg Rechargeable Batteries
J. Han, S. Yagi, H. Takeuchi, M. Nakayama, and T. Ichitsubo
J. Mater. Chem. A, 9, 26401–26409 (2021). doi: 10.1039/D1TA08115B
Energy Storage Mechanism of Monocrystalline Layered FePS3 and FePSe3 as Active Materials for Mg Batteries and Pseudocapacitors
M. Wang, J. Han, W. Liu, M. Kamiko, and S. Yagi
J. Alloy. Compd., 883, 160822 (2021). doi: 10.1016/j.jallcom.2021.160822
Pt-catalyzed D-Glucose Oxidation Reactions for Glucose Fuel Cells
J. Huang, P. Simons, Y. Sunada, J. L. M. Rupp, and S. Yagi
J. Electrochem. Soc., 168, 064511 (2021). doi: 10.1149/1945-
Metamagnetic Behavior in Quadruple Perovskite Oxide
Y. Okazaki, Y. Kato, Y. Kizawa, S. Oda, K. Uemura, T. Nishio, F. Fujii, S. Fujinari, M. Kinoshita, T. Odake, H. Togano, T. Kamegawa, S. Kawaguchi, H. Yamamoto, H. Ikeno, S. Yagi, K. Wada, K.-H. Ahn, A. Hariki, and I. Yamada
Inorg. Chem., 60(10), 7023–7030 (2021). doi: 10.1021/acs.inorgchem.0c03432
Effective 3D Open-channel Nanostructures of a MgMn2O4 Positive Electrode for Rechargeable Mg Batteries Operated at Room Temperature
K. Sone, Y. Hayashi, T. Mandai, S. Yagi, Y. Oaki, and H. Imai
J. Mater. Chem. A, 9, 6851–6860 (2021). doi: 10.1039/D0TA07974J
PtCo3 Nanoparticle-Encapsulated Carbon Nanotubes as Active Catalysts for Methanol Fuel Cell Anodes
Z. Cai, M. Kamiko, I. Yamada, and S. Yagi
ACS Appl. Nano Mater., 4(2), 1445–1454 (2021). doi: 10.1021/acsanm.0c02977
Effects of Zinc Ions at Tetrahedral Sites in Spinel Oxides on Catalytic Activity for Oxygen Evolution Reaction
W. Liu, J. Han, I. Yamada, and S. Yagi
J. Catal., 394, 54–57 (2021). doi: 10.1016/j.jcat.2020.12.014
Extended Gate-type Organic Transistor Functionalized with Molecularly Imprinted Polymer for Taurine Detection
Q. Zhou, M. Wang, S. Yagi, and T. Minami
Nanoscale, 13, 100–107 (2021). doi: 10.1039/D0NR06920E
Redox Behavior of Cu2S in Li2S-Dissolving Aprotic Electrolyte for Sulfide-Ion Batteries
R. Fukunaga, A. Allanore, and S. Yagi
J. Electrochem. Soc., 167, 122504 (2020). doi: 10.1149/1945-7111/abadbd (open access)
EQCM Analysis of Intercalation Species into Graphite Positive Electrodes for Al Batteries
S. Yamagata, I. Takahara, M. Wang, T. Mizoguchi, and S. Yagi
J. Alloy. Compd., 846, 156469 (2020). doi: 10.1016/j.jallcom.2020.156469
Spinel-type MgMn2O4 Enhancement with Vanadate Coating for a Positive Electrode of Magnesium Rechargeable Batteries
S. Doi, R. Ise, T. Mandai, Y. Oaki, S. Yagi, and H. Imai
Langmuir, 36(29), 8537–8542 (2020). doi: 10.1021/acs.langmuir.0c01298
Effects of Size and Crystallinity of CaCu3Fe4O12 on Catalytic Activity for Oxygen Evolution Reaction
S. Yagi, K. Wada, J. Yuuki, W. Liu, and I. Yamada
Mater. Trans., 61(8), 1698–1702 (2020). doi: 10.2320/matertrans.MT-M2020147 (open access)
Interface Control for High-Performance All-Solid-State Li Thin-Film Batteries
J. Kim, C.-F. Xiao, J. Han, Y. Kim, S. Yagi, and H. Kim
Ceram. Int., 46(12), 19960–19965 (2020). doi: 10.1016/j.ceramint.2020.05.063
Redox Behavior of VS2 Nanosheets in Grignard Reagent-Based Electrolyte
M. Wang and S. Yagi
Mater. Letts., 273, 127914 (2020). doi: 10.1016/j.matlet.2020.127914
Enhanced Catalytic Activity and Stability for Oxygen Evolution Reaction on Tetravalent Mixed Metal Oxide
I. Yamada, M. Kinoshita, S. Oda, H. Tsukasaki, S. Kawaguchi, K. Oka, S. Mori, H. Ikeno, and S. Yagi
Chem. Mater., 32(9), 3893–3903 (2020). doi: 10.1021/acs.chemmater.0c00061
Oxygen Evolution Catalysis for Iron Oxides with Various Structures
Y. Okazaki, I. Yamada, and S. Yagi
Mater. Trans., 61(8), 1523–1526 (2020). doi: 10.2320/matertrans.MT-MN2019043 (open access)
Highly Active Hydrogen Evolution Catalysis on Oxygen-deficient Double-perovskite Oxide PrBaCo2O6−δ
H. Togano, K. Asai, S. Oda, H. Ikeno, S. Kawaguchi, K. Oka, K. Wada, S. Yagi, and I. Yamada
Mater. Chem. Front., 4, 1519–1529 (2020). doi: 10.1039/D0QM00056F
Electrocatalytic Activity of Tetravalent Fe-Co Mixed Oxide for Oxygen and Hydrogen Evolution Reactions
M. Kinoshita, I. Yamada, S. Kawaguchi, K. Oka, and S. Yagi
Mater. Trans., 61(8), 1507–1509 (2020). doi: 10.2320/matertrans.MT-MN2019032 (open access)
ZIF-Derived Co9−xNixS8 Nanoparticles Immobilized on N-Doped Carbon as Efficient Catalyst for High-Performance Zinc-air Batteries
Z. Cai, I. Yamada, and S. Yagi
ACS Appl. Mater. Interfaces, 12(5), 5847–5856 (2020). doi: 10.1021/acsami.9b19268
Layered Birnessite MnO2 with Enlarged Interlayer Spacing for Fast Mg-ion Storage
M. Wang and S. Yagi
J. Alloy. Compd., 820, 153135 (2020). doi: 10.1016/j.jallcom.2019.153135
Structured Spinel Oxide Positive Electrodes of Magnesium Rechargeable Batteries: High Rate Performance and High Cyclability by Interconnected Bimodal Pores and Vanadium Oxide Coating
K. Ishii, S. Doi, R. Ise, T. Mandai, Y. Oaki, S. Yagi, and H. Imai
J. Alloy. Compd., 816, 152556 (2020). doi: 10.1016/j.jallcom.2019.152556
Suppressive Effect of Fe cations in Mg(Mn1−xFex)2O4 Positive Electrodes on Oxidative Electrolyte Decomposition for Mg Rechargeable Batteries
J. Han, S. Yagi, and T. Ichitsubo
J. Power Sources, 435, 226822 (2019). doi: 10.1016/j.jpowsour.2019.226822
Ca1−xSrxRuO3 Perovskite at the Metal-insulator Boundary as a Highly Active Oxygen Evolution Catalyst
S. Hirai, T. Ohno, R. Uemura, T. Maruyama, M. Furunaka, R. Fukunaga, W.-T. Chen, H. Suzuki, T. Matsuda, and S. Yagi
J. Mater. Chem. A, 7(25), 15387–15394 (2019). doi: 10.1039/C9TA03789F
High-pressure Synthesis of Highly Oxidized Ba0.5Sr0.5Co0.8Fe0.2O3−δ Cubic Perovskite
I. Yamada, T. Odake, K. Asai, K. Oka, S. Kawaguchi, K. Wada, and S. Yagi
Mater. Chem. Front., 3, 1209–1217 (2019). doi: 10.1039/C9QM00067D
Systematic Study of Descriptors for Oxygen Evolution Reaction Catalysis in Perovskite Oxides
I. Yamada, A. Takamatsu, K. Asai, T. Shirakawa, H. Ohzuku, A. Seno, T. Uchimura, H. Fujii, S. Kawaguchi, K. Wada, H. Ikeno, and S. Yagi
J. Phys. Chem. C, 122(49), 27885–27892 (2018). doi: 10.1021/acs.jpcc.8b09287
Synergistically Enhanced Oxygen Evolution Reaction Catalysis for Multi-Element Transition-Metal Oxides
I. Yamada, A. Takamatsu, K. Asai, H. Ohzuku, T. Shirakawa, T. Uchimura, S. Kawaguchi, H. Tsukasaki, S. Mori, K. Wada, H. Ikeno, and S. Yagi
ACS Appl. Energy Mater., 1(8), 3711–3721 (2018). doi: 10.1021/acsaem.8b00511
Oxygen Vacancy-originated Highly Active Electrocatalysts for Oxygen Evolution Reaction
S. Hirai, K. Morita, K. Yasuoka, T. Shibuya, Y. Tojo, Y. Kamihara, A. Miura, H. Suzuki, T. Ohno, T. Matsuda, and S. Yagi
J. Mater. Chem. A, 6, 15102–15109 (2018). doi: 10.1039/C8TA04697B
Enhanced Electrochemical Properties of MgCo2O4 Mesocrystals as a Positive Electrode Active Material for Mg Batteries
Y. Kotani, R. Ise, K. Ishii, T. Mandai, Y. Oaki, S. Yagi, and H. Imai
J. Alloy. Compd., 739, 793–798 (2018). doi: 10.1016/j.jallcom.2017.12.315
Oxygen Evolution via Bridging Inequivalent Dual-Site Reaction: First-Principles Study of a Quadruple Perovskite Oxide Catalyst
A. Takamatsu, I. Yamada, S. Yagi, and H. Ikeno
J. Phys. Chem. C, 121(51), 28403–28411 (2017). doi: 10.1021/acs.jpcc.7b10748
Non-Fermi Liquids as Highly Active Oxygen Evolution Reaction Catalysts
S. Hirai, S. Yagi, W.-T. Chen, F.-C. Chou, N. Okazaki, T. Ohno, H. Suzuki, and T. Matsuda
Adv. Sci., 1700176 (2017). doi: 10.1002/advs.201700176
Constructing Metal-anode Rechargeable Batteries Utilizing Concomitant Intercalation of Li-Mg Dual Cations into Mo6S8
H. Li, T. Ichitsubo, S. Yagi, and E. Matsubara
J. Mater. Chem. A, 5, 3534–3540 (2017). doi: 10.1039/C6TA10663C
A Key Concept of Utilization of Both Non-Grignard Magnesium Chloride and Imide Salts for Rechargeable Mg Battery Electrolyte
T. Mandai, Y. Akita, S. Yagi, M. Egashira, H. Munakata, and K. Kanamura
J. Mater. Chem. A, 5, 3152–3156 (2017). doi: 10.1039/C6TA10194A
Bifunctional Oxygen Reaction Catalysis of Quadruple Manganese Perovskites
I. Yamada, H. Fujii, A. Takamatsu, H. Ikeno, K. Wada, H. Tsukasaki, S. Kawaguchi, S. Mori, and S. Yagi
Adv. Mater., 29, 1603004 (2017). doi: 10.1002/adma.201603004
Enhancement of the Oxygen Evolution Reaction in Mn3+-based Electrocatalysts: Correlation between Jahn-Teller Distortion and Catalytic Activity
S. Hirai, S. Yagi, A. Seno, M. Fujioka, T. Ohno, and T. Matsuda
RSC Adv., 6, 2019–2023 (2016). doi: 10.1039/C5RA22873E
Ion-exchange Synthesis of Li4Ti5O12 Nanotubes and Nanoparticles for High-rate Li-ion Batteries
S. Yagi, T. Morinaga, M. Togo, H. Tsuda, S. Shio, and A. Nakahira
Mater. Trans., 57(1), 42–45 (2016). doi: 10.2320/matertrans.M-M2015833
Covalency-reinforced Oxygen Evolution Reaction Catalyst
S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami, H. Fujii, H. Chen, N. Umezawa, H. Abe, N. Nishiyama, and S. Mori
Nat. Commun., 6, 8249 (2015). doi: 10.1038/ncomms9249 (open access)
おすすめのコンテンツとして紹介されました。
EQCM analysis of Redox Behavior of CuFe Prussian Blue Analog in Mg Battery Electrolytes
S. Yagi, M. Fukuda, T. Ichitsubo, K. Nitta, M. Mizumaki, and E. Matsubara
J. Electrochem. Soc., 162(12), A2356–A2361 (2015). doi: 10.1149/2.0751512jes (open access)”
One-pot Synthesis of Silica-coated Copper Nanoparticles with High Chemical and Thermal Stability
S. Shiomi, M. Kawamori, S. Yagi, and E. Matsubara
J. Colloid Interf. Sci., 460, 47–54 (2015). doi: 10.1016/j.jcis.2015.08.033
Intercalation and Push-out Process with Spinel-to-rocksalt Transition on Mg Insertion into Spinel Oxides in Magnesium Batteries
S. Okamoto, T. Ichitsubo, T. Kawaguchi, Y. Kumagai, F. Oba, S. Yagi, K. Shimokawa, N. Goto, T. Doi, and E. Matsubara
Adv. Sci., 2, 1500072, 1–9 (2015). doi: 10.1002/advs.201500072
Toward “Rocking-chair type” Mg-Li Dual-salt Battery
T. Ichitsubo, S. Okamoto, T. Kawaguchi, Y. Kumagai, F. Oba, S. Yagi, N. Goto, T. Doi, E. Matsubara
J. Mater. Chem. A, 3, 10188–10194 (2015). doi: 10.1039/C5TA01365H
Surface-layer Formation by Reductive Decomposition of LiPF6 at Relatively High Potentials on Negative Electrodes in Lithium Ion Batteries and Its Suppression
T. Kawaguchi, K. Shimada, T. Ichitsubo, S. Yagi, and E. Matsubara
J. Power Sources, 271, 431–436 (2014). doi:10.1016/j.jpowsour.2014.08.010
A New Aspect of Chevrel Compounds as a Positive Electrode for Magnesium Battery
T. Ichitsubo, S. Yagi, R. Nakamura, Y. Ichikawa, S. Okamoto, K. Sugimura, T. Kawaguchi, A. Kitada, M. Oishi, T. Doi, and E. Matsubara
J. Mater. Chem. A, 2(36), 14858–14866 (2014). doi: 10.1039/C4TA03063J
Three-dimensional Nanoelectrode by Metal-Nanowire-Nonwoven Clothes
M. Kawamori, T. Asai, Y. Shirai, S. Yagi, M. Oishi, T. Ichitsubo, and E. Matsubara
Nano Lett., 14(4), 1932–1937 (2014). doi: 10.1021/nl404753e
EQCM Analysis of Redox Behavior of Prussian Blue in a Lithium Battery Electrolyte
S. Yagi, M. Fukuda, R. Makiura, T. Ichitsubo, and E. Matsubara
J. Mater. Chem. A, 2(21), 8041–8047 (2014). doi:10.1039/C4TA00410H
Iron Alloying Effect on Formation of Cobalt Nanoparticles and Nanowires via Electroless Deposition under a Magnetic Field
M. Kawamori, S. Yagi, and E. Matsubara
J. Electrochem. Soc., 161(1), D59–D66 (2014). doi: 10.1149/2.041401jes
A concept of dual-salt polyvalent-metal storage battery
S. Yagi, T. Ichitsubo, Y. Shirai, S. Yanai, T. Doi, K. Murase, and E. Matsubara
J. Mater. Chem. A, 2(4), 1144–1149 (2014). doi: 10.1039/C3TA13668J
Thermodynamic Consideration on Degradation of Humic Acids by Electrolysis
S. Yagi, K. Nakatsuji, Y. Satake, A. Nakahira, and M. Anpo
Electrochemistry, 82(1), 19–24 (2014). doi: 10.5796/electrochemistry.82.19
Effects of Water Content on Magnesium Deposition from a Grignard Reagent-based Tetrahydrofuran Electrolyte
S. Yagi, A. Tanaka, Y. Ichikawa, T. Ichitsubo, and E. Matsubara
Res. Chem. Intermed., 40(1), 3–9 (2014). doi: 10.1007/s11164-013-1449-9
What determines the critical size for phase separation in LiFePO4 in lithium ion batteries?
T. Ichitsubo, T. Doi, K. Tokuda, E. Matsubara, T. Kida, T. Kawaguchi, S. Yagi, S. Okada, and J. Yamaki
J. Mater. Chem. A, 1(46), 14532–14537 (2013). doi: 10.1039/C3TA13122J
Formation of Self-Repairing Anodized Film on ACM522 Magnesium Alloy by Plasma Electrolytic Oxidation
S. Yagi, K. Kuwabara, Y. Fukuta, K. Kubota, and E. Matsubara
Corros. Sci., 73, 188–195 (2013). doi: 10.1016/j.corsci.2013.03.035
B-Site Deficiencies in A-site-Ordered Perovskite LaCu3Pt3.75O12
M. Ochi, I. Yamada, K. Ohgushi, Y. Kusano, M. Mizumaki, R. Takahashi,
S. Yagi, N. Nishiyama, T. Inoue, and T. Irifune
Inorg. Chem., 52(7), 3985–3989 (2013). doi: 10.1021/ic302809v
Electrochemical Stability of Magnesium Battery Current Collectors in a Grignard Reagent-Based Electrolyte
S. Yagi, A. Tanaka, Y. Ichikawa, T. Ichitsubo, and E. Matsubara
J. Electrochem. Soc., 160(3), C83–C88 (2013). doi: 10.1149/2.033303jes
Elastically constrained phase-separation dynamics competing with charge process in LiFePO4/FePO4 system
T. Ichitsubo, K. Tokuda, S. Yagi, M. Kawamori, T. Kawaguchi, T. Doi, M. Oishi, and E. Matsubara
J. Mater. Chem. A, 1, 2567–2577 (2013). doi: 10.1039/C2TA01102F
Synthesis of Binary Magnesium-Transition Metal Oxides via Inverse Coprecipitation
S. Yagi, Y. Ichikawa, I. Yamada, T. Doi, T. Ichitsubo, and E. Matsubara
Jpn. J. Appl. Phys., 52, 025501 (2013). doi: 10.7567/JJAP.52.025501
See also : Erratum for this paper. Erratum for this paper.
Electrochemical Stability of Metal Electrodes for Reversible Magnesium Deposition/Dissolution in Tetrahydrofuran Dissolving Ethylmagnesium Chloride
S. Yagi, A. Tanaka, T. Ichitsubo, and E. Matsubara
ECS Electrochem. Lett., 1(2), D11–D14 (2012). doi: 10.1149/2.004202eel
Two-dimensionally Patterned Electrodeposition of Sn Film from Aqueous Acid Bath
S. Yagi, E. Takeda, T. Okada, D. Mu, N. Okamoto, T. Saito, and K. Kondo
ECS Electrochem. Lett., 1(2), D8–D10 (2012). doi: 10.1149/2.012202eel
Electroless Growth of Size-controlled Gold Nanoparticles using Hydroquinone
S. Yagi, N. Oeda, and C. Kojima
J. Electrochem. Soc., 159(7), H668–H673 (2012). doi: 10.1149/2.065207jes
Surface Modification of ACM522 Magnesium Alloy by Plasma Electrolytic Oxidation in Phosphate Electrolyte
S. Yagi, A. Sengoku, K. Kubota, and E. Matsubara
Corros. Sci., 57, 74–80 (2012). doi: 10.1016/j.corsci.2011.12.032
Local pH Control by Electrolysis for ZnO Epitaxial Deposition on a Pt Cathode
S. Yagi, Y. Kondo, Y. Satake, A. Ashida, and N. Fujimura
Electrochim. Acta, 62, 348–353 (2012). doi: 10.1016/j.electacta.2011.12.059
Nickel Alloying Effect on Formation of Cobalt Nanoparticles and Nanowires via Electroless Deposition Under a Magnetic Field
M. Kawamori, S.Yagi, and E. Matsubara
J. Electrochem. Soc., 159(2), E37–E44 (2012). doi: 10.1149/2.062202jes
Influence of Mechanical Strain on the Electrochemical Lithiation of Aluminum-based Electrode Materials
T. Ichitsubo, S. Yagi, T. Doi, S. Yukitani, K. Hirai, and E. Matsubara
J. Electrochem. Soc., 159 (1), A14–A17 (2012). doi: 10.1149/2.038201jes
Formation of Nickel Nanowires via Electroless Deposition Under a Magnetic Field
Potential Positive Electrodes for High-voltage Rechargeable Magnesium-ion Batteries
T. Ichitsubo, T. Adachi, S. Yagi, and T. Doi
J. Mater. Chem., 21, 11764–11772 (2011). doi: 10.1039/C1JM11793A
Electroless Deposition of Cobalt Nanowires in an Aqueous Solution under an External Magnetic Field
M. D. L. Balela, S. Yagi, and E. Matsubara
Electrochem. Solid-State Lett., 14(6), D68–D71 (2011). doi: 10.1149/1.3568829
Fabrication of Cobalt Nanowires by Electroless Deposition under External Magnetic Field
M. D. L. Balela, S. Yagi, and E. Matsubara
J. Electrochem. Soc., 158(4), D210–D216 (2011). doi: 10.1149/1.3545065
Mechanical-energy Influences to Electrochemical Phenomena in Lithium-ion Batteries
T. Ichitsubo, S. Yukitani, K. Hirai, S. Yagi, T. Uda, and E. Matsubara
J. Mater. Chem., 21, 2701–2708 (2011). doi: 10.1039/C0JM02893B
(selected as a ‘hot article’ for Journal of Materials Chemistry)
Electrochemical Study on the Synthesis Process of Co-Ni Alloy Nanoparticles via Electroless Deposition
S. Yagi, M. Kawamori, and E. Matsubara
J. Electrochem. Soc., 157(5), E92–E97 (2010). doi: 10.1149/1.3352893
Electrochemical QCM Study of the Synthesis Process of Cobalt Nanoparticles via Electroless Deposition
S. Yagi, M. Kawamori, and E. Matsubara
Electrochem. Solid-State Lett., 13(2), E1–E3 (2010). doi: 10.1149/1.3269051
Room-temperature Synthesis of Cobalt Nanoparticles by Electroless Deposition in Aqueous Solution
M. D. L. Balela, S. Yagi, and E. Matsubara
Electrochem. Solid-State Lett., 13(2), D4–D6 (2010). doi: 10.1149/1.3265525
Allotropic Phase Transformation of Pure Zirconium by High-pressure Torsion
K. Edalati, Z. Horita, S. Yagi, and E. Matsubara
Mater. Sci. Eng. A, 523, 277–281 (2009). doi: 10.1016/j.msea.2009.07.029
Electroless Deposition of Ferromagnetic Cobalt Nanoparticles in Propylene Glycol
M. D. L. Balela, S. Yagi, Z. Lockman, A. Aziz, A. Jr. Amorsolo, and E. Matsubara
J. Electrochem. Soc., 156(9), E139–E142 (2009). doi: 10.1149/1.3169776
Oxidation-state Control of Nanoparticles Synthesized via Chemical Reduction Using Potential Diagrams
S. Yagi, H. Nakanishi, T. Ichitsubo, and E. Matsubara
J. Electrochem. Soc., 156(8), D321–D325 (2009). doi: 10.1149/1.3151966
Interfacial Reaction of Gas-atomized Sn-Zn Solder Containing Ni and Cu Additives
S. Yagi, T. Ichitsubo, E. Matsubara, M. Yamaguchi, H. Kimura, and K. Sasamori
J. Alloy. Compd., 484(1–2), 185–189 (2009). doi: 10.1016/j.jallcom.2009.05.088
Formation of Nickel Nanoparticles by Electroless Deposition Using NiO and Ni(OH)2 Suspensions
S. Yagi, T. Koyanagi, H. Nakanishi, T. Ichitsubo, and E. Matsubara
J. Electrochem. Soc., 155(9), D583–D588 (2008). doi: 10.1149/1.2948380
(also selected for Virtual Journal of Nanoscale Science & Technology, Vol. 18, Issue 4 (2008).)
Formation of Tin Nanoparticles Emebedded in Poly(L-Lactic Acid) Fiber by Electrospinning
S. Yagi, T. Nakagawa, E. Matsubara, S. Matsubara, S. Ogawa, and H. Tani
Electrochem. Solid-State Lett., 11(9), E25–E27 (2008). doi: 10.1149/1.2945871
Formation of Cu Nanoparticles by Electroless Deposition Using Aqueous CuO Suspension
S. Yagi, H. Nakanishi, E. Matsubara, S. Matsubara, T. Ichitsubo, K. Hosoya, and Y. Matsuba
J. Electrochem. Soc., 155(6), D474–D479 (2008). doi: 10.1149/1.2904884
(also selected for Virtual Journal of Nanoscale Science & Technology, Vol. 17, Issue 18 (2008).) See also: Erratum for this paper.
Electrochemical Iron-Chromium Alloying of Carbon Steel Surface Using Alternating Pulsed Electrolysis
S. Yagi, H. Oshima, K. Murase, E. Matsubara, and Y. Awakura
Mater. Trans., 49(6), 1346–1354 (2008). doi: 10.2320/matertrans.MRA2008028
Effects of Volume Strain due to Li-Sn Compound Formation on Electrode Potential in Lithium Ion Batteries
K. Hirai, T. Ichitsubo, T. Uda, A. Miyazaki, S. Yagi, and E. Matsubara
Acta Materialia, 56(7), 1539–1545 (2008). doi: 10.1016/j.actamat.2007.12.002
Ni-Mo Alloying of Nickel Surface by Alternating Pulsed Electrolysis Using Molybdenum(VI) Bath
S. Yagi, A. Kawakami, K. Murase, and Y. Awakura
Electrochim. Acta, 52(19), 6041–6051 (2007). doi: 10.1016/j.electacta.2007.03.063
Alternating Pulsed Electrolysis for Iron-Chromium Alloy Coatings with Continuous Composition Gradient
S. Yagi, K. Murase, T. Hirato, and Y. Awakura
J. Electrochem. Soc., 154(6), D304–D309 (2007). doi: 10.1149/1.2721780
Fe-Cr Alloying of Iron Surface by Asymmetric Alternating Pulsed Electrolysis using Trivalent Chromium Solution
S. Yagi, K. Murase, T. Hirato, and Y. Awakura
Electrochem. Solid-State Lett., 9(5), B32–B34 (2006). doi: 10.1149/1.2184497
Electroless Nickel Plating onto Minute Patterns of Copper Using Ti(IV)/Ti(III) Redox Couple
S. Yagi, K. Murase, S. Tsukimoto, T. Hirato, and Y. Awakura
J. Electrochem. Soc., 152(9), C588–C592 (2005). doi: 10.1149/1.1973244
非水溶媒系におけるCo-Ni合金ナノ粒子形成の電気化学的解析
M. Kawamori, S. Yagi, and E. Matsubara
J. MMIJ, 127(2), 103–107 (2011). doi: 10.2473/journalofmmij.127.103
TiN表面へのCuおよびPdの置換析出挙動とその熱力学的考察
S. Yagi, K. Murase, T. Hirato, and Y. Awakura
表面技術, 56(3), 145–150 (2005). doi: 10.4139/sfj.56.145
八木俊介,「電気化学触媒評価のための電極表面修飾」
八木 俊介,「BEV用リチウムイオン電池と非鉄金属元素」
金属, 特集 非鉄金属の未来, アグネ技術センター,Vol.94, No.6, pp.20-24 (2024). ISSN: 0368-6337
山田 幾也,池野 豪一,八木 俊介,「高圧合成法を活用した電気化学触媒の開発 Development of Electrochemical Catalysts Utilizing High-pressure Synthesis」
CSJ Current Review 49 固体材料開発のフロンティア,熱力学的支配を越えた物質合成と新機能開拓を目指して,日本化学会編,化学同人,Chapter 18,pp.141-146 (2024). ISBN: 9784759814095
八木 俊介,「新製錬プロセスの注目文献」
シリーズ:素材プロセスの注目文献,資源と素材,Vol.8, No.4, pp. 12–15 (2023).
山田幾也,池野豪一,八木俊介「四重ペロブスカイト酸化物の酸素発生触媒特性 (特集 ペロブスカイト)」
八木俊介,レビュー「マグネシウム蓄電池用電解液の発展と今後の課題」
八木俊介, 市坪哲, 「EQCM法を用いたMg2+イオンの挿入・脱離過程の解析」
T. Ichitsubo and S. Yagi, “Novel Mg Rechargeable Battery Cathodes: Chevrel to Spinel”, Next Generation Batteries: Realization of High Energy Density Rechargeable Batteries, Kiyoshi Kanamura (Ed.), Springer
八木俊介, 「金属空気二次電池の材料・セル形状とスタックの構造」, 金属空気二次電池 -要素技術の開発動向と応用展望- 第4章
八木俊介, 「酸素発生反応に対する触媒活性発現のメカニズムとその応用に関する研究」
八木俊介, 「触媒粉末を用いた電極修飾」
山田幾也, 高松晃彦, 池野豪一, 八木俊介, 「四重ペロブスカイトの二機能性酸素反応触媒作用」
八木俊介, 池野豪一, 山田幾也, 「酸素発生触媒開発の新たな展開」
八木俊介, 山田幾也, 「CaCu3Fe4O12の優れた電気化学触媒特性」, 固体物理, Vol. 52, No. 3, pp. 41–47 (2017). ISSN 0454-4544
山田幾也, 八木俊介, 「新しい酸素発生触媒材料の高圧合成」
八木俊介, 山田幾也,「酸素発生反応に高い活性を有するペロブスカイト酸化物触媒」
I. Yamada, S. Yagi, “Fe4+-based quadruple perovskite catalyst for oxygen evolution reaction”
八木俊介, 市坪哲, 松原英一郎, 「多価金属蓄電池の開発に向けて」, 化学工業, 化学工業社, Vol.65, No. 10, pp. 1–7 (2014). ISSN 0451-2014
八木俊介, 「チタンを利用する新しい表面処理プロセス~チタンの性質と利点」, チタン Titanium Japan, Vol.62, No.2, pp. 50–54 (2014). ISSN 1341-1713
八木俊介, 市坪哲, 松原英一郎, 「マグネシウム蓄電池用集電体の評価と課題」
次世代蓄電池の【最新】材料技術と性能評価(第6章第5節 ), 情報技術協会, pp. 644–650 (2013).
八木俊介, 「卑金属ナノ材料の無電解析出と反応制御」
金属ナノ・マイクロ粒子の最新技術と応用(第3章5節), CMC出版, pp. 94–101 (2013). ISBN 978-4-7813-0827-2
八木俊介, 市坪哲, 松原英一郎, 「マグネシウム蓄電池の研究開発の現状とその問題点」
リチウムに依存しない革新型二次電池(第3章第1節), 株式会社エヌ・ティー・エス, pp. 67–78 (2013). ISBN 978-4-86469-038-6
八木俊介, “電位-pH図を利用した金属ナノ粒子形成プロセスの構築 Construction of the Formation Process of Metallic Nanoparticles Using Potential-pH Diagrams”
八木俊介, “電位-pH図を利用した無機材料液相合成プロセスの設計 Process Designing of Liquid-Phase Synthesis of Inorganic Materials using Potential-pH Diagrams”
田口肇, 橋田章三, 横山直範, 塩見昌平, 八木俊介, 松原英一郎, “酸化焼成による銅を発色剤とした赤色釉薬の開発(その1)”, 京都市産業技術総合研究所研究報告, No.2, pp. 59–65 (2012). ISSN: 2186-5124
Shunsuke Yagi, “Potential-pH Diagrams for Oxidation-State Control of Nanoparticles Synthesized via Chemical Reduction”, Thermodynamics – Physical Chemistry of Aqueous Systems, Juan Carlos Moreno-Pirajan (Ed.), InTech,
八木 俊介, “コバルトの特徴と粉体の特性・基礎物性”, 金属(化合物)粉の選び方・使い方
八木 俊介, “液相還元法による金属ナノ粒子形成プロセスの熱力学的考察”, 素材プロセシング第69委員会第2分科会(新素材関連技術)[第62回]研究会資料, pp.24–29 (2008).
八木 俊介, “酸化還元反応を利用する金属析出 Metal Deposition via Oxidation-Reduction Reaction”
水曜会誌(京都大学旧採鉱冶金系会報誌), Vol.23(10), pp.1216–1219 (2007).
Nano and Submicron Olivine Symthesized by Hydrothermal Process
ロッキングチェア型Mg-Liデュアルソルト蓄電池研究:イオン液体を用いた電極材料研究
市坪哲, 李弘毅, 下川航平, 八木俊介, 松原英一郎
溶融塩および高温化学, 60(1), pp.16–22 (2017).
Framework Structures for Mg Battery Cathodes
S. Yagi, M. Fukuda, T. Ichitsubo, and E. Matsubara
Materials Science Forum, 879, pp. 2150–2152 (2017). doi: 10.4028/www.scientific.net/MSF.879.2150
First-principles Calculations of the OH− Adsorption Energy on Perovskite Oxide
H. Ohzuku, H. Ikeno, I. Yamada, and S. Yagi
AIP Conference Proceedings, 1763, 040005 (2016). doi: 10.1063/1.4961353
Electroless Deposition of Nickel Nanoparticles at Room Temperature
M. D. L. Balela, S. Yagi, and E. Matsubara
Advanced Materials Research, 974, pp.107–111 (2014). doi:10.4028/www.scientific.net/AMR.974.107
Formation of Cobalt Nanoparticles from Co(OH)2 suspension
M. D. L. Balela, S. Yagi, and E. Matsubara
Advanced Materials Research, 974, pp.50–54 (2014). doi:10.4028/www.scientific.net/AMR.974.50
Growth of Cobalt Nanowires under External Magnetic Field
M. D. L. Balela, S. Yagi, and E. Matsubara
Advanced Materials Research, 911, pp.136–140 (2014). doi:10.4028/www.scientific.net/AMR.911.136
(Excellent paper award)
Formation of Nickel Nanowires by Electroless Deposition
M. Kawamori, S. Yagi, and E. Matsubara
ECS Transactions, 41(30), pp.1–7 (2012). doi: 10.1149/1.3697740
Room-Temperature Synthesis of Cobalt Nanoparticles in Aqueous Solution
M. D. L. Balela, S. Yagi, and E. Matsubara
ECS Transactions, 28(7), pp.29-34 (2010). doi: 10.1149/1.3491770
Alternating Pulsed Electrolysis for Fe-Cr Surface Alloying of Conventional Carbon Steel
S. Yagi, H. Oshima, K. Murase, E. Matsubara, and Y. Awakura
ECS Transactions, 11(18), pp.23–34 (2008). doi: 10.1149/1.2897440
Alternating Pulsed Electrolysis for Fe-Cr Alloy Coatings Using Trivalent Chromium Solution
S. Yagi, K. Murase, T. Hirato, Y. Awakura, Sohn International Symposium on Advanced Processing of Metals and Materials, Advanced Processing of Metalsand Materials, Vol. 7: Industrial Practice,F. Kongoli and R. G. Reddy (eds.), TMS, pp.479–486 (2006).
Alternating Pulsed Electrolysis for the Formation of Fe-Cr Alloy Layers with a Composition Gradient
S. Yagi, K. Murase, T. Hirato, Y. Awakura, Proceedings of The 16th Iketani Conference (Masuko Symposium: Electrochemistry and Thermodynamics on Materials Processing for Sustainable Production), pp.1001–1004 (2006).
特願2023-182741 2023年10月24日
【発明者】松村 淳平(日本航空電子工業株式会社), 八木 俊介(東京大学)
【発明の名称】銀めっき膜および銀めっき膜の製造方法
特許第5869169号 2017年1月15日(特開2016-221471 2016年12月28日, 特願2015-111652 2015年6月1日)
【発明者】八木 俊介(大阪府立大学), 山田 幾也(大阪府立大学), 和田 光平(冨士ダイス株式会社)
【発明の名称】酸素発生反応用ペロブスカイト酸化物触媒
特許第6302163号 2018年3月9日(特開2014-157801 2014年8月28日,特願2013-037112 2013年2月27日)
【発明者】八木 俊介(大阪府立大学), 田中 信一(株式会社SDC田中)
【発明の名称】電池用耐食性金属部材の製造方法
特開2018-122207 2018年8月9日(特願2017-014257 2017年1月30日)
【発明者】平井 慈人(北見工業大学), 大野 智也(北見工業大学), 松田 剛(北見工業大学), 八木 俊介(東京大学)
【発明の名称】酸素発生反応触媒、酸素発生反応電極及び酸素発生反応方法
特開2016-160139 2016年09月05日(特願2015-040331 2015年03月02日)
【発明者】小橋 正(シャープ株式会社), 辻口 雅人(シャープ株式会社), 内海 康彦(シャープ株式会社), 柿森 伸明(シャープ株式会社), 中平 敦(大阪府立大学), 八木俊介(大阪府立大学)
【発明の名称】A型ゼオライト材料の製造方法
特願2014-001914 2014年1月8日
【発明者】市坪 哲(京都大学), 松原 英一郎(京都大学), 八木 俊介(大阪府立大学), 邑瀬 邦明(京都大学), 北田 敦(京都大学)
【発明の名称】二次電池
特開2011-058021 2011年3月24日(特願2009-205679 2009年9月7日)
【発明者】八木 俊介(京都大学), 松原 英一郎(京都大学)
【発明の名称】強磁性金属ナノ構造体の製造方法、強磁性金属ナノファイバーならびにそれを用いたはんだ、シート材および磁気記録媒体